N-doped reduced graphene oxide anchored with δTa2O5 for energy and environmental remediation: Efficient light-driven hydrogen evolution and simultaneous degradation of textile dyes

2021 
Abstract Precipitation assisted facile hydrothermal method has been developed for anchoring nitrogen-doped reduced graphene oxide (NRGO) with tantalum pentoxide (TO) denoted as TO@NRGO. Synthesized materials were characterized using spectroscopic, optical and microscopic techniques and confirm transforming TO from orthorhombic to hexagonal phase (δ) upon anchoring with NRGO. TO@NRGO, TO and NRGO have been evaluated for photocatalytic hydrogen evolution, degradation of Methylene blue (MB) and Rhodamine B (RhB). The enhanced photocatalytic activity was observed in TO@NRGO nanocomposite compared to TO and NRGO due to decreased bandgap (2.5 eV) and increased surface area (312 m2 g−1). TO@NRGO evolved 19,500 µmol g−1 of hydrogen for 3 h. TO@NRGO showed better degradation efficiency of 94 and 88% at a time of 100 min for MB and RhB, respectively. The parameters involved in photocatalytic dye degradation, like the effect of pH, catalyst dosage, and initial concentration of dyes, have been carefully optimized to achieve maximum performance of the catalyst. The stability and reusability of TO@NRGO are good and managed to degrade dyes effectively even after the 5th run. Thus, TO@NRGO could serve as a choice of material in resolving the issues related to energy and the environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    3
    Citations
    NaN
    KQI
    []