A Machine Learning-Based Approach to Estimate the CPU-Burst Time for Processes in the Computational Grids
2015
The implementation of CPU-Scheduling algorithms such as Shortest-Job-First (SJF) and Shortest Remaining Time First (SRTF) is relying on knowing the length of the CPU-bursts for processes in the ready queue. There are several methods to predict the length of the CPU-bursts, such as exponential averaging method, however these methods may not give an accurate or reliable predicted values. In this paper, we will propose a Machine Learning (ML) based approach to estimate the length of the CPU-bursts for processes. The proposed approach aims to select the most significant attributes of the process using feature selection techniques and then predicts the CPU-burst for the process in the grid. ML techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN), Artificial Neural Networks (ANN) and Decision Trees (DT) are used to test and evaluate the proposed approach using a grid workload dataset named "GWA-T-4 Auver Grid". The experimental results show that there is a strength linear relationship between the process attributes and the burst CPU time. Moreover, K-NN performs better in nearly all approaches in terms of CC and RAE. Furthermore, applying attribute selection techniques improves the performance in terms of space, time and estimation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
11
References
7
Citations
NaN
KQI