Optimizing structure and electrical properties of high-Curie temperature PMN-PHT piezoelectric ceramics via tailoring sintering process

2016 
Pseudo-ternary high-Curie temperature 0.15Pb(Mg 1/3 Nb 2/3 )O 3 -0.4PbHfO 3 -0.45PbTiO 3 (PMN-PHT) piezoelectric ceramics were prepared by the conventional ceramic processing via the columbite precursor method. The influences of sintering temperature and sintering time on structure and electrical properties of the PMN-PHT ceramics were investigated in order to tailor their performance further. The sintered PMN-PHT ceramics exhibit pure perovskite structure with composition locating at the rhombohedral side around the morphotropic phase boundary (MPB) of the PMN-PHT system. The PMN-PHT ceramics sintered at 1260 °C for 2 h exhibit the best dielectric, ferroelectric and piezoelectric properties. The high piezoelectric response of the PMN-PHT ceramics is considered as relating to the MPB effect and their dense microstructure obtained via tailoring sintering conditions. The sintered PMN-PHT ceramics exhibit good thermal stability of piezoelectricity and ferroelectricity within the common usage temperatures, indicating that such ceramics are promising candidates for piezoelectric devices at elevated temperatures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    20
    Citations
    NaN
    KQI
    []