Micro-bead injection spectroscopy for label-free automated determination of immunoglobulin G in human serum

2018 
Immunoglobulin G (IgG) represents the major fraction of antibodies in healthy adult human serum, and deviations from physiological levels are a generic marker of disease corresponding to different pathologies. Therefore, screening methods for IgG evaluation are a valuable aid to diagnostics. The present work proposes a rapid, automatic, and miniaturized method based on UV-vis micro-bead injection spectroscopy (μ-BIS) for the real-time determination of human serum IgG with label-free detection. Relying on attachment of IgG in rec-protein G immobilized in Sepharose 4B, a bioaffinity column is automatically assembled, where IgG is selectively retained and determined by on-column optical density measurement. A “dilution-and-shoot” approach (50 to 200 times) was implemented without further sample treatment because interferences were flushed out of the column upon sample loading, with minimization of carryover and cross-contamination by automatically discarding the sorbent (0.2 mg) after each determination. No interference from human serum albumin at 60 mg mL−1 in undiluted sample was found. The method allowed IgG determination in the range 100–300 μg mL−1 (corresponding to 5.0–60 mg mL−1 in undiluted samples), with a detection limit of 33 μg mL−1 (1.7 mg mL−1 for samples, dilution factor of 50). RSD values were < 9.4 and < 11.7%, for intra and inter-assay precision, respectively, while recovery values for human serum spiked with IgG at high pathological levels were 97.8–101.4%. Comparison to commercial ELISA kit showed no significant difference for tested samples (n = 8). Moreover, time-to-result decreased from several hours to < 5 min and analysis cost decreased 10 times, showing the potential of the proposed approach as a point-of-care method.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    6
    Citations
    NaN
    KQI
    []