Development of AMPA receptor and GABA B receptor-sensitive spinal hyper-reflexia after spinal air embolism in rat: a systematic neurological, electrophysiological and qualitative histopathological study

2012 
article i nfo Decompression sickness results from formation of bubbles in the arterial and venous system, resulting in spinal disseminated neurodegenerative changes and may clinically be presented by motor dysfunction, spinal segmen- tal stretch hyper-reflexia(i.e.,spasticity)andmusclerigidity.Inourcurrentstudy,we describea ratmodel of spi- nal air embolism characterized by the development of similar spinal disseminated neurodegenerative changes and functional deficit. In addition, the anti-spastic potency of systemic AMPA receptor antagonist (NGX424) or GABA B receptor agonist (baclofen) treatment was studied. To induce spinal air embolism, animals received an intra-aortic injection of air (50-200 μl/kg). After embolism, the development of spasticity was measured using computer-controlled ankle rotation. Animals receiving 150 or 200 μl of intra-aortic air injections displayed motor dysfunction with developed spastic (50-60% of animals) or flaccid (25-35% of animals) paraplegia at 5-7 days. MRI and spinal histopathological analysis showed disseminated spinal cord infarcts in the lower tho- racic to sacral spinal segments. Treatment with NGX424 or baclofen provided a potent anti-spasticity effect (i.e., stretch hyper-reflexia inhibition). This model appears to provide a valuable experimental tool to study the pathophysiology of air embolism-induced spinal injury and permits the assessment of new treatment effica- cy targeted to modulate neurological symptoms resulting from spinal air embolism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    2
    Citations
    NaN
    KQI
    []