Epistasis within the MHC contributes to the genetic architecture of celiac disease

2014 
Epistasis has long been thought to contribute to the genetic aetiology of complex diseases, yet few robust epistatic interactions in humans have been detected. We have conducted exhaustive genome-wide scans for pairwise epistasis in five independent celiac disease (CeD) case-control studies, using a rapid model-free approach to examine over 500 billion SNP pairs in total. We found extensive epistasis within the MHC region with 5,359 statistically significant pairs achieving stringent replication criteria across multiple studies. These robust epistatic pairs partially tagged CeD risk HLA haplotypes, and replicable evidence for epistatic SNPs outside the MHC was not observed. Both within and between European populations, we observed striking consistency of epistatic models and epistatic model distribution, thus providing empirical estimates of their frequencies in a complex disease. Within the UK population, models of CeD comprised of both epistatic and additive single-SNP effects increased explained CeD variance by approximately 1% over those of single SNPs. Further analysis showed that additive SNP effects tag epistatic effects (and vice versa), sometimes involving SNPs separated by a megabase or more. These findings show that the genetic architecture of CeD consists of overlapping additive and epistatic components, indicating that the genetic architecture of CeD, and potentially other common autoimmune diseases, is more complex than previously thought.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    1
    Citations
    NaN
    KQI
    []