NanoLambda: Implementing Functions as a Service at All Resource Scales for the Internet of Things.

2020 
Internet of Things (IoT) devices are becoming increasingly prevalent in our environment, yet the process of programming these devices and processing the data they produce remains difficult. Typically, data is processed on device, involving arduous work in low level languages, or data is moved to the cloud, where abundant resources are available for Functions as a Service (FaaS) or other handlers. FaaS is an emerging category of flexible computing services, where developers deploy self-contained functions to be run in portable and secure containerized environments; however, at the moment, these functions are limited to running in the cloud or in some cases at the “edge” of the network using resource rich, Linux-based systems.In this paper, we present NanoLambda, a portable platform that brings FaaS, high-level language programming, and familiar cloud service APIs to non-Linux and microcontroller-based IoT devices. To enable this, NanoLambda couples a new, minimal Python runtime system that we have designed for the least capable end of the IoT device spectrum, with API compatibility for AWS Lambda and S3. NanoLambda transfers functions between IoT devices (sensors, edge, cloud), providing power and latency savings while retaining the programmer productivity benefits of high-level languages and FaaS. A key feature of NanoLambda is a scheduler that intelligently places function executions across multi-scale IoT deployments according to resource availability and power constraints. We evaluate a range of applications that use NanoLambda to run on devices as small as the ESP8266 with 64KB of ram and 512KB flash storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    7
    Citations
    NaN
    KQI
    []