Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion

2015 
We consider continuous-time diffusion models driven by fractional Brownian motion. Observations are assumed to possess a nontrivial likelihood given the latent path. Due to the non-Markovian and high-dimensional nature of the latent path, estimating posterior expectations is computationally challenging. We present a reparameterization framework based on the Davies and Harte method for sampling stationary Gaussian processes and use it to construct a Markov chain Monte Carlo algorithm that allows computationally efficient Bayesian inference. The algorithm is based on a version of hybrid Monte Carlo simulation that delivers increased efficiency when used on the high-dimensional latent variables arising in this context. We specify the methodology on a stochastic volatility model, allowing for memory in the volatility increments through a fractional specification. The method is demonstrated on simulated data and on the S&P 500/VIX time series. In the latter case, the posterior distribution favours values of the Hurst parameter smaller than $1/2$, pointing towards medium-range dependence.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    11
    Citations
    NaN
    KQI
    []