Inositol phosphate metabolism in bradykinin-stimulated human A431 carcinoma cells. Relationship to calcium signalling.

1987 
Stimulation of human A431 epidermoid carcinoma cells by bradykinin causes a very rapid release of inositol phosphates and a transient rise in cytoplasmic free Ca2+ concentration ([Ca2+]i). Bradykinin-induced inositol phosphate formation is half-maximal at a concentration of 4 nM and is not affected by pertussis toxin. H.p.l.c. analysis of the various inositol phosphates shows an immediate but transient accumulation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reaches a peak value of approx. 10 times the basal level within 15 s and slightly precedes the rise in [Ca2+]i, both parameters changing in parallel. After a lag period, bradykinin also induces a massive accumulation of Ins(1,3,4)P3 and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. Our data support the view that part of the newly formed Ins(1,4,5)P3 is converted into Ins(1,3,4)P3 phosphorylation/dephosphorylation with Ins(1,3,4,5)P4 as intermediate. Furthermore, A431 cells were found to contain strikingly high basal levels of two other inositol phosphates, presumably inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), representing more than 50% of the total 3H radioactivity incorporated into inositol phosphates. The presumptive InsP5 and InsP6 are only slightly affected by bradykinin. Although Ins(1,3,4)P3 and InsP4 could function as second messengers, our results suggest that, unlike Ins(1,4,5)P3, neither Ins(1,3,4)P3 nor InsP4 are involved in Ca2+ mobilization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    106
    Citations
    NaN
    KQI
    []