Path cuts: efficient rendering of pure specular light transport
2020
In scenes lit with sharp point-like light sources, light can bounce several times on specular materials before getting into our eyes, forming purely specular light paths. However, to our knowledge, rendering such multi-bounce pure specular paths has not been handled in previous work: while many light transport methods have been devised to sample various kinds of light paths, none of them are able to find multi-bounce pure specular light paths from a point light to a pinhole camera. In this paper, we present path cuts to efficiently render such light paths. We use a path space hierarchy combined with interval arithmetic bounds to prune non-contributing regions of path space, and to slice the path space into regions small enough to empirically contain at most one solution. Next, we use an automatic differentiation tool and a Newton-based solver to find an admissible specular path within a given path space region. We demonstrate results on several complex specular configurations, including RR, TT, TRT and TTTT paths.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
21
References
2
Citations
NaN
KQI