One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and Privilege Escalation

2016 
Row hammer attacks exploit electrical interactions between neighboring memory cells in high-density dynamic random-access memory (DRAM) to induce memory errors. By rapidly and repeatedly accessing DRAMs with specific patterns, an adversary with limited privilege on the target machine may trigger bit flips in memory regions that he has no permission to access directly. In this paper, we explore row hammer attacks in cross-VM settings, in which a malicious VM exploits bit flips induced by row hammer attacks to crack memory isolation enforced by virtualization. To do so with high fidelity, we develop novel techniques to determine the physical address mapping in DRAMmodules at runtime (to improve the effectiveness of double-sided row hammer attacks), methods to exhaustively hammer a large fraction of physical memory from a guest VM (to collect exploitable vulnerable bits), and innovative approaches to break Xen paravirtualized memory isolation (to access arbitrary physical memory of the shared machine). Our study also suggests that the demonstrated row hammer attacks are applicable in modern public clouds where Xen paravirtualization technology is adopted. This shows that the presented cross-VM row hammer attacks are of practical importance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    110
    Citations
    NaN
    KQI
    []