Stochastic quasi-Newton method: application to minimal model for proteins.

2011 
Knowledge of protein folding pathways and inherent structures is of utmost importance for our understanding of biological function, including the rational design of drugs and future treatments against protein misfolds. Computational approaches have now reached the stage where they can assess folding properties and provide data that is complementary to or even inaccessible by experimental imaging techniques. Minimal models of proteins, which make possible the simulation of protein folding dynamics by (systematic) coarse graining, have provided understanding in terms of descriptors for folding, folding kinetics, and folded states. Here we focus on the efficiency of equilibration on the coarse-grained level. In particular, we applied a new regularized stochastic quasi-Newton (S-QN) method, developed for accelerated configurational space sampling while maintaining thermodynamic consistency, to analyze the folding pathway and inherent structures of a selected protein, where regularization was introduced to improve stability. The adaptive compound mobility matrix B in S-QN, determined by a factorized secant update, gives rise to an automated scaling of all modes in the protein, in particular an acceleration of protein domain dynamics or principal modes and a slowing down of fast modes or "soft" bond constraints, similar to lincs/shake algorithms, when compared to conventional Langevin dynamics. We used and analyzed a two-step strategy. Owing to the enhanced sampling properties of S-QN and increased barrier crossing at high temperatures (in reduced units), a hierarchy of inherent protein structures is first efficiently determined by applying S-QN for a single initial structure and T=1>T(θ), where T(θ) is the collapse temperature. Second, S-QN simulations for several initial structures at very low temperature (T=0.01
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []