Comparative ENDOR study at 34 GHz of the triplet state of the primary donor in bacterial reaction centers of Rb. sphaeroides and Bl. viridis

2014 
The primary electron donor (P) in the photosynthetic bacterial reaction center of Rhodobacter sphaeroides and Blastochloris viridis consists of a dimer of bacteriochlorophyll a and b cofactors, respectively. Its photoexcited triplet state in frozen solution has been investigated by time resolved ENDOR spectroscopy at 34 GHz. The observed ENDOR spectra for 3P865 and 3P960 are essentially the same, indicating very similar spin density distributions. Exceptions are the ethylidene groups unique to the bacteriochlorophyll b dimer in 3P960. Strikingly, the observed hyperfine coupling constants of the ethylidene groups are larger than in the monomer, which speaks for an asymmetrically delocalized wave function over both monomer halves in the dimer. The latter observation corroborates previous findings of the spin density in the radical cation states P 865 •+ (Lendzian et al. in Biochim Biophys Acta 1183:139–160, 1993) and P 960 •+ (Lendzian et al. in Chem Phys Lett 148:377–385, 1988). As compared to the bacteriochlorophyll monomer, the hyperfine coupling constants of the methyl groups 21 and 121 are reduced by at least a factor of two, and quantitative analysis of these couplings gives rise to a ratio of approximately 3:1 for the spin density on the halves PL:PM. Our findings are discussed in light of the large difference in photosynthetic activity of the two branches of cofactors present in the bacterial reaction center proteins.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    4
    Citations
    NaN
    KQI
    []