Chemosensitivity of single smooth muscle cells to acetylcholine, noradrenaline, and histamine in vitro

1980 
Electrical responses to acetylcholine, noradrenaline, and histamine were recorded from solitary smooth muscle cells. Iontophoresis of each transmitter elicited three fast responses: a hyperpolarization, a depolarization, or a biphasic hyperpolarization-depolarization. Each transmitter activated a specific receptor since responses were specifically blocked by antagonists, two transmitters elicited different responses in solitary cells, and desensitization of response to one transmitter did not cause desensitization of responses to other transmitters. Responses were due to increased ion conductances since input resistance decreased during responses and reversal potentials were measured for deplarizing responses (−5 mV) and hyperpolarizing responses (−60 mV). Regional differences in transmitter sensitivity were mapped on solitary cells. Biphasic responses were due to simultaneous activation of receptors mediating hyperpolarizing responses and receptors mediating depolarizing responses which were segregated in the cell membrane. Noradrenaline enhanced action potential amplitude by regulation of voltage-dependent ion conductances. Finally, noradrenaline and histamine elicited periodic hyperpolarizing potentials, which may be due to increased intracellular Ca++.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    6
    Citations
    NaN
    KQI
    []