The tolerance to hypoxia is defined by a time-sensitive response of the gene regulatory network in sea urchin embryos.
2021
Deoxygenation, the reduction of oxygen level in the oceans induced by global warming and anthropogenic disturbances, is a major threat to marine life. This change in oxygen level could be especially harmful to marine embryos that utilize endogenous hypoxia and redox gradients as morphogens during normal development. Here we show that the tolerance to hypoxic conditions changes between different developmental stages of the sea urchin embryo, possibly due to the structure of the gene regulatory networks (GRNs). We demonstrate that during normal development, bone morphogenetic protein (BMP) pathway restricts the activity of the vascular endothelial growth factor (VEGF) pathway to two lateral domains and by that controls proper skeletal patterning. Hypoxia applied during early development strongly perturbs the activity of Nodal and BMP pathways that affect VEGF pathway, dorsal-ventral (DV) and skeletogenic patterning. These pathways are largely unaffected by hypoxia applied after DV-axis formation. We propose that the use of redox and hypoxia as morphogens makes the sea urchin embryo highly sensitive to environmental hypoxia during early development, but the GRN structure provides higher tolerance to hypoxia at later stages.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
66
References
1
Citations
NaN
KQI