Cooperative copper centres in a metal–organic framework for selective conversion of CO 2 to ethanol

2019 
Selective conversion of CO2 to ethanol is of great interest but presents a significant challenge in forming a C–C bond while keeping a C–O bond intact throughout the process. Here, we report cooperative CuI sites on a Zr12 cluster of a metal–organic framework (MOF) for selective hydrogenation of CO2 to ethanol. With the assistance of an alkali cation, the spatially proximate Zr12-supported CuI centres activate hydrogen via bimetallic oxidative addition and promote C–C coupling to produce ethanol. The Cs+-modified MOF catalyst, in 10 hours, produces ethanol with >99% selectivity and a turnover number (based on all Cu atoms) of 4,080 in supercritical CO2, with 30 MPa of CO2 and 5 MPa of H2 at 85 °C, or a turnover number of 490 at 2 MPa of CO2/H2 (1/3) and 100 °C. Our work highlights the potential of using MOFs as a tunable platform to design earth-abundant metal catalysts for CO2 conversion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    106
    Citations
    NaN
    KQI
    []