Water flow and temperature drove epiphytic microbial community shift: Insight into nutrient removal in constructed wetlands from microbial assemblage and co-occurrence patterns

2021 
Abstract The impacts of water flow and low temperature on nutrient removal and underlying ecological mechanism of epiphytic microbial community in constructed wetlands remain to be fully illustrated. In this study, low temperature inhibited the decrease of TN, NH4+-N, TP, and COD concentrations in water, but water flow decreased NH4+-N and COD concentrations strikingly. The relative conductivity, soluble sugar, and protein of M. spicatum increased, while the total chlorophyll contents decreased significantly under the stress of water flow and low temperature. Temperature affected the alpha-diversity and composition of the microbial community, while water flow caused differences in community distribution. Deterministic processes dominated in microbial community assembly with increasing environmental stress. Co-occurrence network analysis demonstrated that Chlorophyta, Verrucomicrobia, Proteobacteria, Bacteroidetes, and Firmicutes phyla were the dominant hubs in September, however, low temperatures caused a shift to Metazoan dominated network, demonstrating diminished nutrient removal capacity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []