Application of ER Stress Biomarkers to Predict Formulated Monoclonal Antibody Stability

2019 
For a therapeutic mAb to reach the clinic, the molecule must be produced at an appropriate yield and quality, then formulated to maintain efficacy and stability. The formation of sub‐visible particles (SVPs) can impact on product stability and is monitored during formulation development however, the potential of a mAb to form such species can be influenced throughout the whole bioprocess. We investigate levels of intracellular ER stress perceived by cells, day of mAb harvest and the relationship to subsequent product stability of two mAbs (denoted A and B), produced in CHO cell lines, as determined by SVP content after accelerated stability studies. We show the propensity of mAb A to form SVPs can be predicted by transcript expression of biomarkers of cellular ER stress, heavy/light chain transcript and polypeptide amounts, and harvest day. Further, mAb A material harvested on day 9 of culture was more stable, in terms of SVP formation, than material harvested on day 13. These data suggest that ER stress perceived by CHO cells during culture can reflect the stability of a mAb, and that biomarkers of such stress could help define culture harvest time as a tool to control or reduce SVP formation in formulated mAbs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    4
    Citations
    NaN
    KQI
    []