TH-CD-BRA-10: Towards Reference Dosimetry of MR-Linacs Using a Clinical Probe-Format Calorimeter
2016
Purpose:
To evaluate the influence of a 1.5 T magnetic field (B-field) on the response of a small-scale graphite calorimeter probe (GPC) developed for use as a novel clinical reference dosimeter. Characterization of the GPC was also assessed in a hybrid MRI-linac (MRL) clinical prototype by performing absolute dosimetry in multiple detector orientations.
Methods:
B-field influence was characterized using a variable-strength electromagnet system located 280 cm from the source of a clinical linac. The GPC was used to perform a total of 160 absolute dose measurements (6 MV, 920 MU/min) in a water phantom placed between the poles of the electromagnet. The magnitude of the B-field between the poles was varied in the range of 0 – 1.5 T. The relative response of the GPC was determined and compared to that of a thimble type ionization chamber (Exradin A1SL, Standard Imaging). Next, 65 dose measurements were performed using the GPC in a clinical MRL field (7 MV, 620 MU/min) to quantify the rotational dependence of the detector in the presence of a 1.5 T B-field. The GPC was rotated in steps of 90° inside a graphite phantom (SSD 140 cm, depth 2.5 cm) for two detector orientations (parallel and perpendicular to the B field).
Results:
Relative to the zero B-field condition, the A1SL chamber exhibited an average overresponse of +1.2 % ± 0.03 % at a B-field of 1.5 T, while the GPC under-responded on average by −0.5 % ± 0.9 %. For the MRL measurements, no significant differences were observed between the parallel and perpendicular orientations. In both cases, a rotational dependence of approximately ±1 % was measured.
Conclusion:
This work suggests that the B-field has minimal influence on the response of the GPC, making it a potentially attractive solution for clinical MRL reference dosimetry.
This work has been supported in part by the CREATE Medical Physics Research Training Network NSERC grant RGPIN 432290, as well as NSERC grants RGPIN 298191 & 435608. JR is a scholar from The Terry Fox Foundation Strategic Training Initiative for Excellence in Radiation Research for the 21st Century (EIRR21).
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI