Modeling of Direct Current Grid Equipment for the Simulation and Analysis of Electromagnetic Transients
2020
RESUME Les transmissions a base de courant continu sont capables de repondre mieux que les transmissions traditionnelles a base de courant alternatif aux enjeux de nos jours tels que l’integration des energies renouvelables, les difficultes avec l’installation des nouvelles lignes aeriennes pour les raisons socio-environnementaux, la gestion des flux de puissance sur le reseau electrique. Ceci est grâce aux systemes de controle performants et rapides, a un niveau de fiabilite accrue des composants utilises, a l’efficacite energetique des technologies de pointe, telles que les convertisseurs modulaires multiniveaux (Modular Multilevel Converter ou MMC en anglais). Ces avantages ont contribue a une croissance rapide du nombre de transmissions a courant continu a travers le monde dans les dernieres annees, avec les plans d’etablir des reseaux multi-terminaux d’un niveau superieur aux reseaux electriques traditionnels dans le but de les renforcer. Les outils de simulation numeriques sont necessaires pour faciliter et accelerer la mise en œuvre de ce type de projets d’envergure. Ils permettent d’analyser et d’etudier les systemes electriques de plus en plus complexes et par consequent d’eviter les problemes operationnels, d’augmenter la fiabilite et l’efficacite des reseaux electriques. La complexite accrue des reseaux electriques modernes qui contiennent les composants a base de l’electronique de puissance tels que les liaisons a courant continu exige une recherche sur les outils de simulation et les modeles avances. Ainsi, cette these se focalise sur le developpement d’un cadre pour les simulations precises et rapides des liaisons a courant continu. A la suite d’une revue de la litterature il est demontre que la modelisation des MMCs a un impact particulierement important sur la precision et l’acceleration des simulations et par consequent une grande partie de cette these est dediee aux differentes methodes pour reduire le temps de simulation et ameliorer la precision des resultats dans les etudes avec les MMCs.
Le cœur du sujet commence par la presentation de la modelisation des MMC hybrides et leurs systemes de controle. Les modeles sont classes en quatre categories selon le niveau de precision : le modele detaille permet de representer les non-linearites au niveau des composants semiconducteurs.----------ABSTRACT
Compared to the traditional alternating current technology-based electrical grids, High-Voltage Direct Current (HVDC) transmission systems can more effectively respond to the challenges of the modern power grid related to the integration of renewable energy sources, difficulty to install new overhead lines due to socio-environmental reasons, and power flow management. This is mainly due to high performance of control systems, fast response times, reliable components and energy efficiency of the state-of-the-art HVDC technologies of today, such as the Modular Multilevel Converter (MMC). These advantages have contributed to the rapid growth in the number of HVDC projects in recent years with plans of having overlay HVDC grids that can reinforce the existing electrical grids.
To facilitate and accelerate the implementation of large-scale HVDC projects, it is required to use numerical simulation tools. Such tools allow to perform advanced analysis of involved electrical systems for preventing operating problems, increasing robustness and efficiency in power grids. The increased level of complexity of modern power grids with power electronics-based components, such as HVDC, requires research on advanced simulation tools and models.
Therefore, this thesis aims to develop a framework allowing for accurate modeling and fast simulations of HVDC projects. After analysis of existing literature, the areas with high potential impact on accuracy and acceleration of electromagnetic transient simulations are found, and it is the modeling of MMCs that is considered in this thesis. Thus, a significant part of this thesis is dedicated to research on efficient modeling techniques that allow to reduce simulation time and improve accuracy for MMC-based HVDC systems.
The modeling aspects and control systems of hybrid MMCs are presented first. The MMC models used in electromagnetic transient simulations are grouped into four categories. The detailed model represents the nonlinear current-voltage characteristics of semiconductor switches. The detailed equivalent model represents the switches as two-value resistances: a small value for the closed state and a large value for the open state. The arm equivalent model assumes all capacitors in each arm have identical voltages, so a single equivalent capacitor is used to represent the whole arm, thus greatly reducing the computational burden of the model.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI