Spiral structures and temperature distribution in the quiescent accretion disc of the cataclysmic binary V2051 Ophiuchi
2016
We present the capabilities of our new code for obtaining Doppler maps implementing the maximum likelihood approach. As test data, we used observations of the dwarf nova V2051 Ophiuchi. The system was observed in quiescence at least 16 d before the onset of the next outburst. Using Doppler maps obtained for ten emission lines covering three orbital cycles, we detected spiral structures in the accretion disc of V2051 Oph. However, these structures could be biased as our data sampled the orbital period of the binary at only eight different orbital phases. Our Doppler maps show evolution from a one-arm wave structure in H$\alpha$ to two-armed waves in the other lines. The location of the two-arm structures agrees with simulations showing tidally driven spiral waves in the accretion disc. During consecutive cycles, the qualitative characteristics of the detected structures remained similar but the central absorption increased. For the first time, using the Doppler tomography method, we obtained temperature maps of the accretion disc. However, taking into account all the assumptions involved when using our method to retrieve them, the result should be treated with caution. Our maps present a relatively flat distribution of the temperature over the disc, showing no temperature increase at the location of the spiral arms. Using `ring masking', we have revealed an ionized region located close to the expected location of stream--disc interactions. We found the average temperature of the accretion disc to be 5600 K, which is below the critical limit deduced from the disc instability model.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
50
References
9
Citations
NaN
KQI