Transplanted L1 Expressing Radial Glia and Astrocytes Enhance Recovery after Spinal Cord Injury

2011 
Abstract A major obstacle for the transplantation of neural stem cells (NSCs) into the lesioned spinal cord is their predominant astrocytic differentiation after transplantation. We took advantage of this predominant astrocytic differentiation of NSCs and expressed the paradigmatic beneficial neural cell adhesion molecule L1 in radial glial cells and reactive and nonreactive astrocytes as novel cellular vehicles to express L1 under the control of the promoter for the human glial fibrillary acidic protein (GFAP-L1 NSCs). Behavioral analysis and electrophysiological H-reflex recordings revealed that mice transplanted with GFAP-L1 NSCs showed enhanced locomotor recovery in comparison to mice injected with wild type (WT) NSCs or control mice injected with phosphate-buffered saline (PBS). This functional recovery was further accelerated in mice transplanted with L1-expressing radial glial cells that had been immunoisolated from GFAP-L1 NSCs (GFAP-L1-i cells). Morphological analysis revealed that mice grafted w...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    29
    Citations
    NaN
    KQI
    []