Pharmacophore modeling and virtual screening in search of novel Bruton’s tyrosine kinase inhibitors

2019 
Bruton’s tyrosine kinase (BTK) is a known drug target for B cell malignancies and autoimmune diseases like rheumatoid arthritis. Consequently, efforts to develop BTK inhibitors have gained momentum in the last decade, resulting in a number of potential inhibitory molecules. However, to date, there are only two FDA approved drugs for B cell malignancies (Ibrutinib and Acalabrutinib), thus continued efforts are warranted. A large number of molecular scaffolds with potential BTK inhibitory activity are already available from these studies, and therefore we employed a ligand-based approach towards computer-aided drug design to develop a pharmacophore model for BTK inhibitors. Using over 400 molecules with known half maximal inhibitory concentrations (IC50) for BTK, a four-point pharmacophore hypothesis was derived, with two aromatic rings (R), one hydrogen bond acceptor (A) and one hydrogen bond donor (D). Screening of two small-molecule databases against this pharmacophore returned 620 hits with matching chemical features. Docking these against the ATP-binding site of the BTK kinase domain through a virtual screening workflow yielded 30 hits from which ultimately two natural compounds (two best scoring poses for each) were prioritized. Molecular dynamics simulations of these four docked complexes confirmed the stability of protein–ligand binding over a 200 ns time period, and thus their suitability for lead molecule development with further optimization and experimental testing. Of note, the pharmacophore model developed in this study would also be further useful for de novo drug design and virtual screening efforts on a larger scale.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    4
    Citations
    NaN
    KQI
    []