VanX, a bacterial d-alanyl-d-alanine dipeptidase: Resistance, immunity, or survival function?

1999 
The zinc-containing d-alanyl-d-alanine (d-Ala-d-Ala) dipeptidase VanX has been detected in both Gram-positive and Gram-negative bacteria, where it appears to have adapted to at least three distinct physiological roles. In pathogenic vancomycin-resistant enterococci, vanX is part of a five-gene cluster that is switched on to reprogram cell-wall biosynthesis to produce peptidoglycan chain precursors terminating in d-alanyl-d-lactate (d-Ala-d-lactate) rather than d-Ala-d-Ala. The modified peptidoglycan exhibits a 1,000-fold decrease in affinity for vancomycin, accounting for the observed phenotypic resistance. In the glycopeptide antibiotic producers Streptomyces toyocaensis and Amylocatopsis orientalis, a vanHAX operon may have coevolved with antibiotic biosynthesis genes to provide immunity by reprogramming cell-wall termini to d-Ala-d-lactate as antibiotic biosynthesis is initiated. In the Gram-negative bacterium Escherichia coli, which is never challenged by the glycopeptide antibiotics because they cannot penetrate the outer membrane permeability barrier, the vanX homologue (ddpX) is cotranscribed with a putative dipeptide transport system (ddpABCDF) in stationary phase by the transcription factor RpoS (σs). The combined action of DdpX and the permease would permit hydrolysis of d-Ala-d-Ala transported back into the cytoplasm from the periplasm as cell-wall crosslinks are refashioned. The d-Ala product could then be oxidized as an energy source for cell survival under starvation conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    64
    Citations
    NaN
    KQI
    []