DeepPredict: A deep predictive intelligence platform for patient monitoring

2017 
A novel platform, DeepPredict, for predicting hospital bed exit events from video camera systems is proposed. DeepPredict processes video data with a deep convolutional neural network consisting of five main layers: a 1 × 1 3D convolutional layer used for generating feature maps from raw video data, a context-aware pooling layer used for rectifying data from different camera angles, two fully connected layers used for applying pre-trained deep features, and an output layer used to provide a likelihood of a bed exit event. Results for a model trained on 180 hours of data demonstrate accuracy, sensitivity, and specificity of 86.47%, 78.87%, and 94.07%, respectively, when predicting a bed exit event up to seven seconds in advance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    2
    Citations
    NaN
    KQI
    []