МНОГОТОЧЕЧНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ОПЕРАТОРЫ: «РАСЩЕПЛЕНИЕ» КРАТНЫХ В ГЛАВНОМ СОБСТВЕННЫХ ЗНАЧЕНИЙ

2017 
В статье изучается краевая задача для дифференциального оператора восьмого порядка с суммируемым потенциалом. Граничные условия краевой задачи являются многоточечными. Выведено интегральное уравнение для решений дифференциального уравнения, задающего изучаемый дифференциальный оператор. Получены асимптотические формулы и оценки для решений соответствующего дифференциального уравнения при больших значениях спектрального параметра. Изучая граничные условия, выведено уравнение на собственные значения в виде определителя четвёртого порядка. С помощью свойств определителей и асимптотических формул для решений дифференциального уравнения изучается асимптотическое поведение корней уравнения на собственные значения оператора. Коэффициенты граничных условий изучаемой краевой задачи подобраны таким образом, что основное приближение уравнения на собственные значения оператора имеет два корня кратности три. Подробно изучена индикаторная диаграмма уравнения на собственные значения. Изучая один из секторов индикаторной диаграммы, выведена асимптотика собственных значений изучаемого оператора. Показано, что кратные в главном приближении собственные значения «расщепляются» на три однократных серии собственных значений. Аналогичные свойства собственных значений наблюдаются и в остальных секторах индикаторной диаграммы.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []