HOTAIR Facilitates Endocrine Resistance in Breast Cancer Through ESR1/miR-130b-3p Axis: Comprehensive Analysis of mRNA-miRNA-lncRNA Network.

2021 
Background To summarize the regulatory role of mRNA-miRNA-lncRNA network associated with endocrine therapy resistance (ETR) in breast cancer. Methods We analyzed the differentially expressed genes (DEGs), differentially expressed lncRNAs (DELs), and differentially expressed miRNAs (DEMs) in long-term estrogen-deprived (LTED) estrogen receptor (ER)-positive breast cancer cells (LTED MCF7) (modeling relapse on endocrine therapy) and MCF7 cells in the presence of estrogen (E2) (modeling a patient at primary diagnosis) by mining GSE120929 and GSE120930 datasets. The mRNA-miRNA-lncRNA network was constructed by multiple bioinformatic tools. The prognosis of genes from the network was validated in breast cancer patients with following systemic treatment (endocrine therapy) by GEPIA, Kaplan-Meier plotter and UALCAN database. Results Totally, 769 DEGs, 33 DEMs, and 10 DELs were selected. The mRNA-miRNA-lncRNA network was established including 60 mRNA nodes, 6 miRNA nodes and 3 lncRNA nodes. A significant module containing 3 nodes and 3 edges was calculated based on the mRNA-miRNA-lncRNA network. The hub genes in the network are ABCG2, ESR1 and GJA1. ESR1/miR-130b-3p/HOTAIR are significantly correlated with the prognosis of breast cancer patients with endocrine therapy. Conclusion This study provides a novel ETR-related mRNA-miRNA-lncRNA network. Further, we suggest that ESR1/miR-130b-3p/HOTAIR may be promising targets for clinical treatment of endocrine therapy-resistant breast cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []