Phase stability of TiAl-X (X=V, Nb, Ta, Cr, Mo, W, and Mn) alloys

2020 
Abstract Introducing high symmetric cubic disordered β or ordered β 0 phases by alloying β-stabilizers improves the strength and high-temperature deformability of intermetallic γ-TiAl. However, the β phase is prone to decomposition of lower symmetric hexagonal phases such as ω 0 and ω ’ ’ , which are extremely brittle and harmful to the ductility of the alloy. Therefore, understanding the effect of the β-stabilizers on the phase stability of TiAl is crucial for the rational design of TiAl based alloys. In the present work, the equilibrium lattice structures, bulk moduli, and heats of formation of β, β 0 , ω ’ ’ , and ω 0 of TiAl with some typical β stabilizers V, Nb, Ta, Cr, Mo, W, and Mn were calculated by using a first-principles method, with which the relative phase stability were discussed. We showed that the phase stability sequence is β β 0 ω 0 ω ’ ’ for Ti4Al3Nb and Ti4Al3Ta, β ω 0 β 0 ω ’ ’ for Ti4Al3V, Ti4Al3Mo and Ti4Al3W, and β ω 0 ω ’ ’ β 0 for Ti4Al3Cr and Ti4Al3Mn. The β-stabilizing effect of the alloying element X increases from Nb/Ta to V/Mo/W to Cr/Mn. The relative stability of the various phases is roughly in accordance with the trends of the unit volume and bulk modulus against the phases with a few exceptions. The phase diagrams of the alloys associated with these phases were estimated by comparing the free energies against the temperature of various phases, evaluated with the calculated unit volumes and bulk moduli.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    18
    Citations
    NaN
    KQI
    []