Patterns of axono-cortical evoked potentials: an electrophysiological signature unique to each white matter functional site?

2021 
BACKGROUND Brain-to-brain evoked potentials constitute a new methodology that could help to understand the network-level correlates of electrical stimulation applied for brain mapping during tumor resection. In this paper, we aimed to describe the characteristics of axono-cortical evoked potentials recorded from distinct, but in the same patient, behaviorally eloquent white matter sites. METHODS We report the intraoperative white matter mapping and axono-cortical evoked potentials recordings observed in a patient operated on under awake condition of a diffuse low-grade glioma in the left middle frontal gyrus. Out of the eight behaviorally eloquent sites identified with 60-Hz electrical stimulation, five were probed with single electrical pulses (delivered at 1 Hz), while recording evoked potentials on two electrodes, covering the inferior frontal gyrus and the precentral gyrus, respectively. Postoperative diffusion-weighted MRI was used to reconstruct the tractograms passing through each of the five stimulated sites. RESULTS Each stimulated site generated an ACEP on at least one of the recorded electrode contacts. The whole pattern-i.e., the specific contacts with ACEPs and their waveform-was distinct for each of the five stimulated sites. CONCLUSIONS We found that the patterns of ACEPs provided unique electrophysiological signatures for each of the five white matter functional sites. Our results could ultimately provide neurosurgeons with a new tool of intraoperative electrophysiologically based functional guidance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []