On-chip and freestanding elastic carbon films for micro-supercapacitors
2016
Integration of electrochemical capacitors with silicon-based electronics is a major challenge, limiting energy storage on a chip. We describe a wafer-scale process for manufacturing strongly adhering carbide-derived carbon films and interdigitated micro-supercapacitors with embedded titanium carbide current collectors, fully compatible with current microfabrication and silicon-based device technology. Capacitance of those films reaches 410 farads per cubic centimeter/200 millifarads per square centimeter in aqueous electrolyte and 170 farads per cubic centimeter/85 millifarads per square centimeter in organic electrolyte. We also demonstrate preparation of self-supported, mechanically stable, micrometer-thick porous carbon films with a Young’s modulus of 14.5 gigapascals, with the possibility of further transfer onto flexible substrates. These materials are interesting for applications in structural energy storage, tribology, and gas separation.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
483
Citations
NaN
KQI