Lossless geometry compression for steady-state and time-varying irregular grids

2006 
In this paper we investigate the problem of lossless geometry compression of irregular-grid volume data represented as a tetrahedral mesh. We propose a novel lossless compression technique that effectively predicts, models, and encodes geometry data for both steady-state (i.e., with only a single time step) and time-varying datasets. Our geometry coder is truly lossless and also does not need any connectivity information. Moreover, it can be easily integrated with a class of the best existing connectivity compression techniques for tetrahedral meshes with a small amount of overhead information. We present experimental results which show that our technique achieves superior compression ratios, with reasonable encoding times and fast (linear) decoding times.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    9
    Citations
    NaN
    KQI
    []