DNA damage by 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced p53-mediated apoptosis through activation of cytochrome P450/aryl hydrocarbon receptor

2017 
Abstract 2,3,7,8-Tetrachlorodibenzo- p -dioxin (TCDD; polycyclic aromatic hydrocarbon) is a persistent and ubiquitous environmental contaminant that causes a wide variety of deleterious effects. In this study, the DNA damage and apoptotic activity induced by TCDD was examined using in silico and in vitro approaches. In silico study showed that conformational changes and energies involved in the binding of TCDD to cytochrome P450 1B1 (CYP1B1) were crucial for its target proteins. Moreover, activated TCDD had high affinity to bind with aryl hydrocarbon receptor (AhR), with a binding energy of −564.7 Kcal/mol. Further, TCDD-CYP1B1 complex showed strong binding affinity for caspase 3, showing a binding energy of −518.5 Kcal/mol, and the docking of caspase inhibitors in the complex showed weak interaction with low binding energy as compared to TCDD-CYP1B1 caspase complexes. Interestingly, TCDD-induced apoptosis was significantly suppressed in Ac-DEVD-CMK-pretreated cells. The DNA damage activity of TCDD was quantified by comet tail formation and γ-H2AX foci formation in HaCaT cells. The role of CYP1B1 and AhR in DNA damage and apoptosis was demonstrated, and clotrimazole as well as knockdown of CYP1B1 and AhR could inhibit TCDD activation and suppress DNA damage followed by apoptosis in HaCaT cells. Moreover, TCDD increased expression of p53 and PUMA and our data showed that TCDD induced DNA damage followed by p53-mediated apoptosis. This study highlights the critical role of CYP1B1 and AhR in TCDD activity and proposes that inhibition of these key molecules might serve as a potential therapeutic approach for treatment of allergy and cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    9
    Citations
    NaN
    KQI
    []