Femtosecond excitation transfer processes in biliprotein trimers

1993 
Femtosecond processes in allophycocyanin, C-phycocyanin and phycoerythrocyanin trimers and monomers have been examined by means of polarization pump-probe technique. No femtosecond kinetics were observed in monomeric preparations. The isotropic absorption recovery kinetics with (tau) equals 440 +/- 50 fs which is not accompanied by anisotropy decay kinetics was obtained in allophycocyanin trimers at 612 nm. The conclusion about energy transfer between neighboring (alpha) 84 and (beta) 84 chromophores with different absorption spectra was made. The proposed model takes into account a stabilizing role of the linker peptide. Spectral and kinetic measurements were made in the 635 - 690 nm spectral region where the proposed acceptor should absorb. The bleaching of the 650-nm band occurs with a delay relative to the bleaching at 615 nm. Only a rise term was observed at 658 nm in consistence with the proposed model. Anisotropy values calculated around 650 nm at 3 ps after excitation are in the range 0.1 - 0.25 corresponding to an angle of 30 degree(s) - 45 degree(s) between the donor and acceptor transition dipole moments. A 500-fs absorption recovery and anisotropy decay process was obtained for C-phycocyanin trimers and explained by Forster energy transfer over 20.8 angstroms between neighboring (alpha) 84 and (beta) 84 chromophores of different monomeric subunits having similar absorption spectra and with a 65 degree(s) angle between their orientations. Energy transfer between violobilin ((alpha) 84) and phycocyanobilin ((beta) 84) chromophores was examined in donor and acceptor spectral regions of phycoerythrocyanin trimers, and was found to take 400 fs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []