The interaction between Lateral size effect and grain size when scratching polycrystalline copper using a Berkovich indenter

2016 
AbstractIt has been reported previously that, for single and polycrystalline copper (fcc), the indentation size effect and the grain size effect (GSE) can be combined in a single length-scale-dependent deformation mechanism linked to a characteristic length-scale calculable by a dislocation-slip-distance approach (X. D. Hou and N. M. Jennett, ‘Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects,’ Acta Mater., Vol. 60, pp. 4128–4135, 2012). Recently, we identified a ‘lateral size effect (LSE)’ in scratch hardness measurements in single crystal copper, where the scratch hardness increases when the scratch size is reduced (A. Kareer, X. D. Hou, N. M. Jennett and S. V. Hainsworth ‘The existence of a lateral size effect and the relationship between indentation and scratch hardness’ Philos. Mag. published online 24 March 2016). This paper investigates the effect of grain size ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    5
    Citations
    NaN
    KQI
    []