Anatomy and Ultrasound-Guided Injection of the Medial Branch of the Dorsal Ramus of the Cervical Spinal Nerves in the Horse: A Cadaveric Study

2020 
OBJECTIVES  The aim of this study was to describe the anatomy of the nerves supplying the cervical articular process joint and to identify relevant anatomical landmarks that could aid in the ultrasound-guided location and injection of these nerves for diagnostic and therapeutic purposes. STUDY DESIGN  Twelve cadaveric equine necks were used. Five necks were dissected to study the anatomy of the medial branch of the dorsal ramus of the cervical spinal nerves 3 to 7. Relevant anatomical findings detected during dissections were combined with ultrasonographic images obtained in one other neck. Six additional necks were used to assess the accuracy of ultrasound-guided injections of the medial branch with blue dye. RESULTS  Each examined cervical articular process joint, except for C2 to C3, presented a dual nerve supply. The articular process joints were found to be in close anatomical relationship with the medial branch of the dorsal ramus of the cervical spinal nerve exiting from the intervertebral foramen at the same level, and with the medial branch of the dorsal ramus of the cervical spinal nerve exiting from the intervertebral foramen one level cranial to the articular process joint of interest. A total of 55 nerves were injected under ultrasonographic guidance, 51 of which were successfully stained. CONCLUSION  The current study provided new detailed information regarding the innervation of the cervical articular process joint. The medial branches of the dorsal rami of the cervical spinal nerves were injected with an accuracy that would be of clinical value. Our study offers the foundations to develop new diagnostic and therapeutic techniques for pain management in cervical articular process joint arthropathy in horses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    2
    Citations
    NaN
    KQI
    []