SnO x /graphene anode material with multiple oxidation states for high-performance Li-ion batteries.

2021 
Tin and its oxides are promising anode materials owing to their high theoretical capacity, rich resource, and environmental benignity. To achieve low cost and green synthesis, a facile synthetic route of SnO x /graphene composites is proposed, using a simple galvanic replacement method to quickly obtain abundant foamed tin as raw material and ball milling method to realize a mechanochemical reaction between SnO x (0 ≤ x ≤ 2) and graphene. Under different annealing conditions, the foamed tin is converted to tin oxides with multiple oxidation states (Sn3O4, SnO, and SnO2). These unique components can greatly affect the electrochemical performance of the electrode in LIBs. The as-prepared electrode (SnO x -300/G) obtained by annealing foamed tin at 300 °C for 4 h and combining SnO x powders with graphene via ball milling shows great cycling stability, retaining a high capacity of 786 mA h g-1 at 0.1 A g-1 after 150 cycles, and its initial Coulombic efficiency can reach 84.03%. Thus, this facile synthesis can provide an environmentally friendly route for commercial production of high-performance energy storage materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []