Fundamental limits of random access communication with retransmissions

2017 
We consider a single cell wireless uplink in which randomly arriving devices transmit their payload to a receiver. Given SNR per user, payload size per device, a fixed latency constraint T, total available bandwidth W, i.e., total symbol resources is given by N = TW. The total bandwidth W is evenly partitioned into B bins. Each time slot of duration T is split into a maximum number of retransmission attempts M. Hence, the N resources are partitioned into N/MB resources each bin per retransmission. We characterize the maximum average rate or number of Poisson arrivals that can successfully complete the random access procedure such that the probability of outage is sufficiently small. We analyze the proposed setting for i) noise-limited regime and ii) interference-limited regime. We show that in the noise-limited regime the devices share the resources, and in the interference-limited regime, the resources split such that devices do not experience any interference. We then incorporate Rayleigh fading to model the channel power gain distribution. Although the variability of the channel causes a drop in the number of arrivals that can successfully complete the random access phase, similar scaling results extend to the Rayleigh fading case.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []