Discrete time crystal in the gradient field Heisenberg model.

2019 
We show that time crystal phases, which are known to exist for disorder-based many-body localized systems, also appear in systems where localization is due to strong magnetic field gradients. Specifically, we study a finite Heisenberg spin chain in the presence of a gradient field, which can be realized experimentally in quantum dot systems using micromagnets or nuclear spin polarization. Our numerical simulations reveal time crystalline order over a broad range of realistic quantum dot parameters, as evidenced by the long-time preservation of spin expectation values and the asymptotic form of the mutual information. We also consider the undriven system and present several diagnostics for many-body localization that are complementary to those recently studied. Our results show that these non-ergodic phases should be realizable in modest-sized quantum dot spin arrays using only demonstrated experimental capabilities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    9
    Citations
    NaN
    KQI
    []