STABILITY OF SYNTHESIZED SILVER NANOPARTICLES IN CITRATE AND MIXED GELATIN/CITRATE SOLUTION

2018 
The study focuses on an investigation of the influence of both citrate and mixed gelatin/citrate as a reductant and stabilizer on the colloidal stability of silver nanoparticles (AgNPs)synthesized by a chemical reduction of Ag + ions after a short - (7th day) - and long - (118th day) - term storage. Formed AgNPs were characterized by a UV–vis Spectroscopy, Transmission Electron Microscope (TEM), Dynamic light scattering (DLS) and Zeta-potential (ZP). The obtained results revealed that a short-term stability of the synthesized AgNPs was greatly influenced by a citrate stabilizer with the absence of gelatin. Smaller-sized AgNPs (average particle diameter of 3 nm), roughly spherical in a shape, were obtained with a narrow size distribution. The very negative value of the Zeta-potential confirmed a strong stability of the citrate capped AgNPs. However, a surface coating of the AgNPs by a gelatin/citrate stabilizer was found to be a dominant contributor in improving a long-term stability of the AgNPs (average particle diameter of 26 nm). The use of gelatin in mixed stabilizer solution provided the AgNPs with higher monodispersity and a controllable size after both the short and long-term storage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    4
    Citations
    NaN
    KQI
    []