Effect of Doping on Surface Reactivity and Conduction Mechanism in Samarium-Doped Ceria Thin Films

2014 
A systematic study by reversible and hysteretic electrochemical strain microscopy (ESM) in samples of cerium oxide with different Sm content and in several working conditions allows disclosing the microscopic mechanism underlying the difference in electrical conduction mechanism and related surface activity, such as water adsorption and dissociation with subsequent proton liberation. We have measured the behavior of the reversible hysteresis loops by changing temperature and humidity, both in standard ESM configuration and using the first-order reversal curve method. The measurements have been performed in much smaller temperature ranges with respect to alternative measuring techniques. Complementing our study with hard X-ray photoemission spectroscopy and irreversible scanning probe measurements, we find that water incorporation is favored until the doping with Sm is too high to allow the presence of Ce3+. The influence of doping on the surface reactivity clearly emerges from all of our experimental resu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    29
    Citations
    NaN
    KQI
    []