Stepwise evolution and convergent recombination underlie the global dissemination of carbapenemase-producing Escherichia coli

2018 
Carbapenem-resistant Enterobacteriaceae are considered by WHO as critical priority pathogens for which novel antibiotics are urgently needed. The dissemination of carbapenemase-producing Escherichia coli (CP-Ec) in the community is a major public health concern. However, the global molecular epidemiology of CP-Ec isolates, as well as the genetic bases for the emergence and global dissemination of specific lineages, remain largely unknown. Here, by combining a thorough genomic and evolutionary analysis of Ec ST410 isolates with a broad analysis of 12,398 E. coli and Shigella genomes, we showed that the fixation of carbapenemase genes depends largely on a combination of mutations in ftsI encoding the penicillin binding protein 3 and in the porin genes ompC and ompF. Mutated ftsI genes and a specific ompC allele spread across the species by recombination. Those mutations were in most cases selected prior to carbapenemase gene acquisition. The selection of CP-Ec lineages able to disseminate is more complex than the mere acquisition of carbapenemase genes and might be largely triggered by beta-lactams other than carbapenems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    2
    Citations
    NaN
    KQI
    []