Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling

2019 
Abstract A long-standing unresolved problem in understanding Earth's deep carbon cycle is whether crustal carbon is recycled beyond arc depths. While isotopic signatures of eclogitic diamonds and their inclusions suggest deep recycling of crustal material, the crustal carbon source remains controversial; seafloor sediment – the widely favored crustal carbon source – cannot explain the combined carbon and nitrogen isotopic characteristics of eclogitic diamonds. Here we examined the carbon and oxygen isotopic signatures of bulk-rock carbonate for 80 geographically diverse samples from altered mafic-ultramafic oceanic crust (AOC), which comprises 95 vol% of the crustal material in subducting slabs. The results show: (i) AOC contains carbonate with δ 13 C values as low as −24‰, indicating the presence of biogenic carbonate; (ii) carbonate in AOC was mainly formed during low-temperature ( ±0.3 × 10 12 mol C/yr carried by subducting AOC into the trench, which is 50–90% of previous estimates, but still of the same order of the carbon influx carried by subducting sediments into the trench. The AOC can retain carbon better than sediment during subduction into the asthenosphere, transition zone and lower mantle. Mixing of asthenospheric and AOC fluids provides the first consistent explanation of the diverse record of carbon and nitrogen isotopes in diamonds, suggesting that AOC, instead of sediment, is the key carrier of crustal carbon into the deep mantle.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    93
    References
    23
    Citations
    NaN
    KQI
    []