Characterization of Polyphenol and Volatile Fractions of Californian-Style Black Olives and Innovative Application of E-Nose for Acrylamide Determination

2021 
Californian-style black olives require a sterilization treatment that produces a carcinogenic contaminant, acrylamide. Thus, this compound was evaluated in two different olive cultivars using an electronic nose (E-nose). The sterilization intensity had a significant influence on the final phenol concentrations, acrylamide content, and volatile compounds. Increasing the sterilization intensity from 10 to 26 min (F0) reduced the phenol content, but it promoted acrylamide synthesis, leading to a wide range of this toxic substance. The Ester and phenol groups of volatile compounds decreased their content when the sterilization treatment increased; however, aldehyde and other volatile compound groups significantly increased their contents according to the thermal treatments. The compounds 4-ethenyl-pyridine, benzaldehyde, and 2,4-dimethyl-hexane are volatile compounds with unpleasant odours and demonstrated a high amount of influence on the differences found after the application of the thermal treatments. The “Manzanilla Cacerena” variety presented the highest amount of phenolic compounds and the lowest acrylamide content. Finally, it was found that acrylamide content is correlated with volatile compounds, which was determined using multiple linear regression analysis (R2 = 0.9994). Furthermore, the aroma of table olives was analysed using an E-nose, and these results combined with Partial Least Square (PLS) were shown to be an accurate method (range to error ratio (RER) > 10 and ratio of performance to deviation (RPD) > 2.5) for the indirect quantification of this toxic substance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []