How a Hemicarcerand Incarcerates Guests at Room Temperature Decoded with Modular Simulations

2020 
Hemicarcerands are host molecules created to study constrictive binding with guest molecules for insights into the rules of molecular complexation. However, the molecular dynamics simulations that facilitate such studies have been limited because three-dimensional models of hemicarcerands are tedious to build and their atomic charges are complicated to derive. There have been no molecular dynamics simulations of the reported water-soluble hemicarcerand (Octacid4) that explain how it uniquely encapsulates its guests at 298 K and keeps them encapsulated at 298 K in NMR experiments. Herein we report a modular approach to hemicarcerand simulations that simplifies the model building and charge derivation in a manner reminiscent of the approach to protein simulations with truncated amino acids as building blocks. We also report that apo Octacid4 in water adopts two clusters of conformations, one of which has an equatorial portal open thus allowing guests to enter the cavity of Octacid4, in microsecond molecular dynamics simulations performed using the modular approach at 298 K. Under the same simulation conditions, the guest-bound Octacid4 adopts one cluster of conformations with all equatorial portals closed thus keeping the guests incarcerated. These results explain the unique constrictive binding of Octacid4 and suggest that the guest-induced host conformational change that impedes decomplexation is a previously unrecognized conformational characteristic that promotes strong molecular complexation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []