Wood forming tissue-specific expression of PdSuSy and HCHL increases holocellulose content and improves saccharification in Populus

2020 
Development of strategies to deconstruct lignocellulosic biomass in tree species is essential for biofuels and biomaterials production. We applied a wood forming tissue-specific system in a hybrid poplar to express both PdSuSy (a sucrose synthase gene from Populus deltoides × P. euramericana that has not been functionally characterized) and HCHL (the hydroxycinnamoyl-CoA hydratase-lyase gene from Pseudomonas fluorescens, which inhibits lignin polymerization in Arabidopsis). The PdSuSy-HCHL overexpression poplars correspondingly driven by the promoters of Arabidopsis AtCesA7 and AtC4H resulted in a significant increase in cellulose (> 8%), xylan (> 12%) and glucose (> 29%) content, accompanying a reduction in galacturonic acid (> 36%) content, compared to control plants. The saccharification efficiency of these overexpression poplars was dramatically increased by up to 27%, but total lignin content was unaffected. These transgenic poplars showed inhibited growth characteristics, including > 16% reduced plant height, > 10% reduced number of internodes, and > 18% reduced fresh weight after growth of 4 months, possibly due to relatively low expression of HCHL in secondary xylem. Our results demonstrate the structural complexity and interaction of the cell wall polymers in wood tissue and outline a potential method to increase biomass saccharification in woody species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []