How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles

2018 
The ability to understand and exploit entropic contributions to ordering transition is of essential importance in the design of self-assembling systems with well-controlled structures. However, much less is known about the role of assembly kinetics in entropy-driven phase behaviors. Here, by combining computer simulations and theoretical analysis, we report that the implementation of entropy in driving phase transition significantly depends on the kinetic process in the reaction-induced self-assembly of newly designed nanoparticle systems. In particular, such systems comprise binary Janus nanoparticles at the fluid–fluid interface and undergo phase transition driven by entropy and controlled by the polymerization reaction initiated from the surfaces of just one component of nanoparticles. Our simulations demonstrate that the competition between the reaction rate and the diffusive dynamics of nanoparticles governs the implementation of entropy in driving the phase transition from randomly mixed phase to in...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    9
    Citations
    NaN
    KQI
    []