Examining maternal and environmental transfer of mercury into American alligator eggs

2020 
Abstract American alligators are exposed to mercury (Hg) throughout their natural range and may maternally transfer Hg into their eggs. Wildlife species are highly sensitive to Hg toxicity during embryonic development and neonatal life, and information on Hg transfer into eggs is critical when attempting to understand the effects of Hg exposure on developing oviparous organisms. To examine Hg transfer in alligators, the objectives of the present study were to 1) determine Hg concentrations in yolk (embryonic and neonatal food source) from wild alligator eggs collected from three locations - Yawkey Wildlife Center SC (YWC), Lake Apopka FL (LA), and Lake Woodruff FL (LW); 2) examine the relationship between THg concentrations in wild alligator nest material and egg yolk at Merritt Island National Wildlife Refuge, FL; 3) examine the Hg concentrations in wild maternal female alligators (blood) and the THg in corresponding egg yolks and embryos across three nesting seasons at a single location (YWC), and evaluate the relationship between nesting female THg concentrations (blood) and their estimated age and number of nesting years (YWC); and 4) assess the transfer of biologically-relevant Hg concentrations (based on Hg measured in maternal female blood) into embryos using an egg-dosing experiment. Mean total Hg (THg) concentrations observed at each site were 26.3 ng/g ± 11.0 ng/g (YWC), 8.8 ng/g ± 5.1 ng/g (LA), and 22.6 ng/g ± 6.3 ng/g (LW). No relationship was observed between THg in alligator nest material and corresponding yolk samples, nor between THg in maternal alligator blood and estimated age and number of nesting years of these animals. However, significant positive relationships were observed between THg in blood of nesting female alligators and THg in their corresponding egg yolk. We observed that 12.8% of the maternal blood THg is found in the corresponding egg yolk, and a highly significant correlation was observed between the two sample types (r = 0.66; p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    4
    Citations
    NaN
    KQI
    []