Protein stabilization and refolding in a gigantic self-assembled cage

2021 
Summary Spatial isolation of molecules is often a powerful strategy for regulating their molecular behavior. Biological systems employ such mechanisms well; however, scientists have yet to rival nature, particularly for macromolecular substrates. We demonstrated that the encapsulation of a protein in a molecular cage with an open framework stabilizes the tertiary structure of the protein and improves its enzymatic activity. Particularly, when the three-dimensionally confined enzyme was exposed to an organic solvent, its half-life was prolonged 1,000-fold. Kinetic and spectroscopic analysis of the enzymatic reaction revealed that the key to this stability is the isolated space; this is reminiscent of chaperonins, which use their large internal cavities to assist the folding of client proteins. The single-molecule protein caging affords a new type of protein-based nanobiotechnology that accelerates molecular biology research as well as industrial applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    1
    Citations
    NaN
    KQI
    []