Novel hybrids of 15-membered 8a- and 9a-azahomoerythromycin A ketolides and quinolones as potent antibacterials.

2010 
Abstract A series of novel 6-O-substituted and 6,12-di-O-substituted 8a-aza-8a-homoerythromycin A and 9a-aza-9a-homoerythromycin A ketolides were synthesized and evaluated for in vitro antibacterial activity against a panel of representative erythromycin-susceptible and erythromycin-resistant test strains. Another series of ketolides based on 14-membered erythromycin oxime scaffold was also synthesized and their antibacterial activity compared to those of 15-membered azahomoerythromycin analogues. In general, structure–activity studies have shown that 14-membered ketolides displayed favorable antibacterial activity in comparison to their corresponding 15-membered analogues within 9a-azahomoerythromycin series. However, within 8a-azahomoerythromycin series, some compounds incorporating a ketolide combined with either quinoline or quinolone pharmacophore substructures showed significantly potent activity against a variety of erythromycin-susceptible and macrolide-lincosamide-streptogramin B (MLS B )-resistant Gram-positive pathogens as well as fastidious Gram-negative pathogens. The best compounds in this series overcome all types of resistance in relevant clinical Gram-positive pathogens and display hitherto unprecedented in vitro activity against the constitutively MLS B -resistant strain of Staphylococcus aureus . In addition, they also represent an improvement over telithromycin ( 2 ) and cethromycin ( 3 ) against fastidious Gram-negative pathogens Haemophilus influenzae and Moraxella catarrhalis .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    25
    Citations
    NaN
    KQI
    []