СТРУКТУРА И ЭЛЕКТРОННЫЕ СВОЙСТВА ДЕФЕКТОВ НА ГРАНИЦЕ СОЕДИНЕННЫХ ПЛАСТИН КРЕМНИЯ

2015 
Comprehensive studies of the structure and electronic properties of defects occurring on the connection boundary of disarranged n − type Si(001) wafers have been made by the methods of transmission electron microscopy, deep level transient spectroscopy (DLTS) and photoluminescence. The main revealed defects are two types of dislocation structure: orthogonal dislocation network composed of two screw dislocation families and zigzag mixed dislocations. The dislocation structures observed are sources of intense luminescence whose spectra are appreciably different from the standard dislocation luminescence spectra at all the investigated misfit angles of the Si bonded wafers. We show that an increase of the misfit angle results in a strong transformation of the dislocation luminescence spectra consisting in changes of the form of the spectra and a decrease in the integral luminescence intensity. In the samples in question the DLTS method revealed the presence of deep centers the concentration of which increased with increasing of twist misorientation of bonded wafers. It has been established that the deep centers are related to the dislocation structures observed by means of transmission electron microscopy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []